Friday, November 14, 2008

tiny pricks

On the side of a mountain
I ate a bur.
It was well into morn and
I was on some kind of trip
But nothing was a blur
Though I admit I was ripped.

I licked my sweater that I lent-
to a friend but they didn't stick

Now lookin' back on that day -
man, I gotta say, I know I've
met many more people that
just had it in them to be pricks &
More than that bur in my mouth

Some of 'em you're drinking stout
with and, yeah, they're real dicks
And some 're moody uncool chicks

But I swear it's all just the same ...
I just can't help but to get so bored
I put up with 'em just long enough
until I can clean off my black slate
' keep walkin' through those doors
where I make it passed them gates
that'a I 'seen but never been before

Just like the morning on the mountain
lookin' down at the church and steeple
and all the ghost like little tiny people

Just like the morning on the mountain
lookin' down at the church and steeple
and all the ghost like little tiny people


Just like the morning on the mountain
lookin' down at the church and steeple
and all the ghost like little tiny people


(Some people just enjoy being tiny pricks)


Best of the Roses (and even their thorns),
John "Noir" French = mystrawhat.com
the - new - everyday - media

Pelvis Dated To 1.2 Million Years Ago Shows Ancestors May Have Been Born With Big Heads


ScienceDaily (Nov. 14, 2008) — Discovery of the most intact female pelvis of Homo erectus may cause scientists to reevaluate how early humans evolved to successfully birth larger-brained babies.
"This is the most complete female Homo erectus pelvis ever found from this time period," said Indiana University Bloomington paleoanthropologist Sileshi Semaw. "This discovery gives us more accurate information about the Homo erectus female pelvic inlet and therefore the size of their newborns."
A reconstruction of the 1.2 million-year-old pelvis discovered in 2001 in the Gona Study Area at Afar, Ethiopia, that has led researchers to speculate early man was better equipped than first thought to produce larger-brained babies. The actual fossils remain in Ethiopia.
The discovery will be published in Science this week (Nov. 14) by Semaw, leader of the Gona Project in Ethiopia, where the fossil pelvis was discovered with a group of six other scientists that includes IU Department of Geosciences graduate student Melanie Everett.
Reconstructing pelvis bone fragments from the 1.2 million-year-old adult female, Semaw and his co-workers determined the early ancestor's birth canal was more than 30 percent larger than earlier estimates based on a 1.5-million-year-old juvenile male pelvis found in Kenya. The new female fragments were discovered in the Gona Study Area in Afar, Ethiopia, in 2001 and excavation was completed in 2003.
Scientists also were intrigued by other unique attributes of the specimen, such as its shorter stature and broader body shape more likely seen in hominids adapted to temperate climates, rather than the tall and narrow body believed to have been efficient for endurance running.
Early humans became taller and narrower over time, scientists believe, partly due to long distance running and to help them maintain a constant body temperature. One consequence, however, is that a narrower pelvis would have been less accommodating to producing larger-brained offspring.
But rather than a tall, narrow hominid with the expected slight pelvic region, Semaw and the Gona researchers found evidence of a hominid ready to produce offspring with a much larger brain size.
"The female Homo erectus pelvic anatomy is basically unknown," Semaw said. "And as far as the fossil pelvis of ancestral hominids goes, all we've had is Lucy (dated at 3.2 million years and also found in Ethiopia), and she is very much farther back in time from modern humans."
Scientists studying early man predominantly find fragments of craniums and dental remains, while fossil bones from the neck down are rarely discovered. Even more difficult to verify are Homo erectus fossil bones that can be identified as those belonging to a female.
Scientists had thought early adult Homo erectus females, because of the assumed small birth canal, would produce offspring with only a limited neonatal brain size. These young would have then experienced rapid brain growth while still developmentally immature, leading researchers to envision a scenario of maternal involvement and child-rearing on par with that of modern humans. But those theories had been based upon extrapolations from the existing male skeleton from Kenya.
"This find will give us far more accurate information," Semaw said. Semaw is also a research scientist at the Stone Age Institute, a research center near Bloomington dedicated to the study of early human evolution and culture. It is affiliated with Indiana University's CRAFT, the Center for Research into the Anthropological Foundations of Technology.
Gona has turned out to be a productive dig site for Semaw. In 1997 Semaw and colleagues reported the oldest known stone tools used by ancestral humans. Then in 2004 he coauthored a paper summarizing Gona's geological properties and the site's cornucopia of hominid fossils spanning several million years. At the time, Science gave the article an "Editor's Choice" recognition. In 2005 he and colleagues published an article in Nature announcing the discovery of Ardipithecus ramidus, one of the earliest ancestral hominids, dating between 4.3 and 4.5 million years ago.
Scott Simpson (Case Western Reserve University School of Medicine and the Cleveland Museum of Natural History), Jay Quade (University of Arizona), Naomi Levin (University of Utah), Robert Butler (University of Portland) and Guillaume Dupont-Nivet (Utrecht University, Netherlands) also contributed to the report. Support for the research was provided by the Leakey Foundation, the National Science Foundation, the National Geographic Society and the Wenner-Gren Foundation.
The authors thank Ethiopia's Authority for Research and Conservation of Cultural Heritage and the National Museum of Ethiopia for research permits and support.
Best of the Roses, John French
mystrawhat.com
theneweverydaymedia

First Direct Images Of A Planetary Family Around A Normal Star

ScienceDaily (Nov. 13, 2008) — Astronomers using the Gemini North telescope and W.M. Keck Observatory on Hawaii’s Mauna Kea have obtained the first-ever direct images identifying a multi-planet system around a normal star.

The Gemini images allowed the international team to make the initial discovery of two of the planets in the confirmed planetary system with data obtained on October 17, 2007. Then, on October 25, 2007, and in the summer of 2008, the team, led by Christian Marois of the National Research Council of Canada’s Herzberg Institute of Astrophysics (Victoria B.C., Canada) and members from the U.S. and U.K., confirmed this discovery and found a third planet orbiting even closer to the star with images obtained at the Keck II telescope. In both cases, adaptive optics technology was used to correct in real-time for atmospheric turbulence to obtain these historic infrared images of an extra-solar multiple-planet system.

According Dr. Marois, this discovery is the first time we have directly imaged a family of planets around a normal star outside of our solar system. Team member Bruce Macintosh of the Lawrence Livermore National Laboratories adds, “Until now, when astronomers discover new planets around a star, all we see are wiggly lines on a graph of the star's velocity or brightness. Now we have an actual picture showing the planets themselves, and that makes things very interesting.” The discovery article is published in the November 13, 2008, issue of Science Express.

The host star (a young, massive star called HR 8799) is about 130 light years away from Earth. Comparison of multi-epoch data show that the three planets are all moving with, and orbiting around, the star, proving that they are associated with it rather than just being unrelated background objects coincidentally aligned in the image. HR 8799 is faintly visible to the naked eye, but only to those who live well away from bright city lights or have a small telescope or even binoculars, see online finder charts here.

The planets, which formed about sixty million years ago, are young enough that they are still glowing from heat released as they contracted. Analysis of the brightness and colors of the objects (at multiple wavelengths) shows that these objects are about seven and ten times the mass of Jupiter. As in our solar system, these giant planets orbit in the outer regions of this system – at roughly 25, 40, and 70 times the Earth-Sun separation. The furthest planet orbits just inside a disk of dusty debris, similar to that produced by the comets of the Kuiper Belt objects of our solar system (just beyond the orbit of Neptune at 30 times the Earth-Sun distance). In some ways, this planetary system seems to be a scaled-up version of our solar system orbiting a larger and brighter star.

The parent star HR 8799 has about 1.5 times the mass of the Sun and is 5 times more luminous but is significantly younger. Infrared observations by satellites have shown evidence for a massive disk of cold dust orbiting the star. According to Benjamin Zuckerman (a UCLA professor of physics and astronomy in the Physics & Astronomy Dept. and a co-author on the paper) who has been studying dust disks orbiting nearby stars for decades, “HR 8799's dust disk stands out as one of the most massive in orbit around any star within 300 light years of Earth.”

HR 8799 observations are part of a survey of 80 such young, dusty, and massive stars located in the solar neighborhood. The survey is using Gemini, the W.M. Keck, and VLT observatories' adaptive optics systems to constrain the Jupiter-mass planet populations in a range of separations inaccessible to other exoplanet detection techniques, i.e. separations similar to the outer giant planets of our solar system.

Dr. Marois adds that this discovery was made after observing only a few stars, which may lead to the conclusion that Jupiter-mass planets at separations similar to the giant planets of our solar system are frequent around stars more massive than the Sun. Marois concludes that HR 8799’s planetary system will certainly be studied in great detail in the years to come, and it will surely be a prime target for future next-generation, exoplanet-finding instruments and dedicated space missions. (see background on Gemini planet-finding instrument program).

Ultimately, astronomers are working towards images and spectroscopic studies of truly Earth-like planets, but that will require specialized space telescopes that are still on the drawing board. Dr. Macintosh said, “After all these years, it’s amazing to have a picture showing not one but three planets. The discovery of the HR 8799 system is a crucial step on the road to the ultimate detection of another Earth.”

Best of the Roses, John French

mystrawhat.com

theneweverydaymedia